e-privacy 2025 (21-22/10), Firenze Misurare l'Umano? Dal Vitruviano all'Algoritmo

Blockchain tra privacy e regolamentazioni: un nuovo paradigma di compliance

Andrea Rizzini - andrea.rizzini@polimi.it

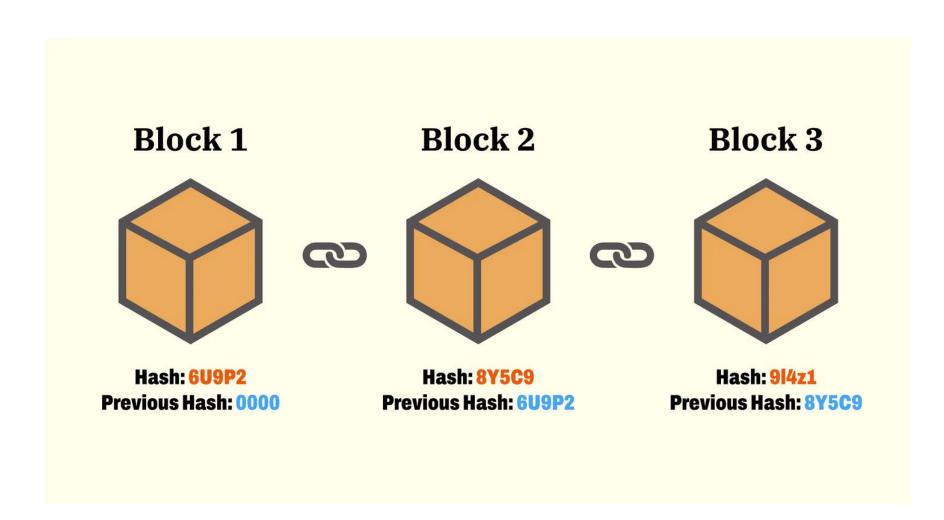


Roadmap

1) Concetti base sulla tecnologia blockchain

2) Concetto di pseudo-anonimato e perchè non è sufficente

3) Privacy tools... e problemi



4) Compliance tools... e problemi

5) Il nostro contributo: Ancestral Commitment Compliance

Blokchain - concetti di base

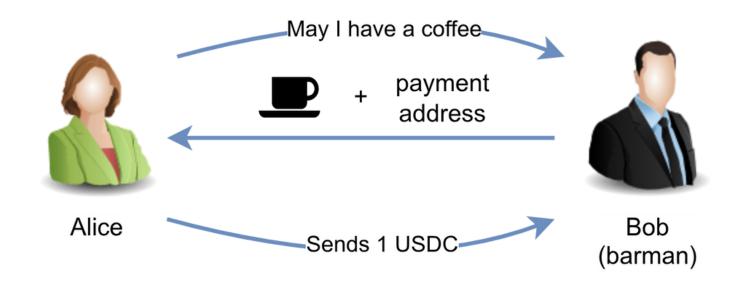
- Registro distribuito di transazioni digitali
- Le transazioni vengono raccolte in blocchi
- Ogni blocco è collegato crittograficamente con il precedente

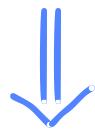
Sistema distribuito -> I nodi devono acconsentire in maniera distribuita ai nuovi blocchi che verranno aggiunti

Meccanismi di consenso: PoW, PoS

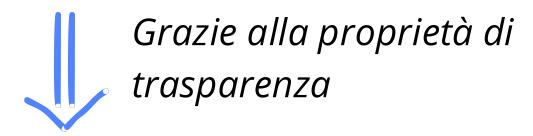
Il concetto di identità nelle blockchain

Le blockhain sono <u>trasparenti</u>


Grazie agli explorer, chiunque può ispezionare blocchi e transazioni



Perchè lo pseudo-anonimato non è sufficente


Consideriamo il seguente scenario:

Bob è un barista che accetta pagamenti crypto
 Alice vuole pagare un caffè in USDC

- Alice conosce l'indirizzo di Bob (il barista)
- Bob conosce l'indirizzo di Alice

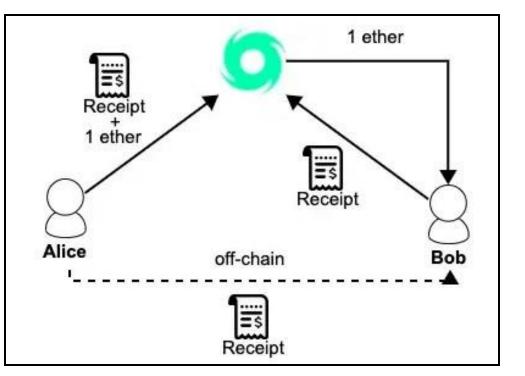
- Alice può vedere tutti gli introiti del bar
- Bob può vedere tutte le spese di Alice

Soluzioni privacy-preserving negli anni

Soluzioni native

Zcash modalità per le transazioni

Transazioni


Monero

private di

default

Tools

Mixers: agiscono da intermediario rompendo il link mittente / destinatario

... e problemi

Tornado Cash Founder, Roman Storm, Faces Trial for Money Laundering Charges

Published Jul 14, 2025, 11:34 PM

\$7 miliardi riciclati tramite Tornado Cash dalla sua creazione nel 2019

\$455 milioni provenienti da furti attribuiti al gruppo Lazarus

\$96 milioni provenienti dall'attacco a Harmony Bridge (giugno 2022)

\$7,8 milioni provenienti dall'attacco a Nomad Bridge (agosto 2022)

Fonte: https://home.treasury.gov/news/press-releases/jy0916

Soluzioni di compliance - regolamentazioni

Recentemente, molte regolamentazioni sono state proposte, solo per citarne

Raccomandazioni FATF (Rec. 15 - new technologies, Rec. 16 - travel rule)

MiCA - Market in Crypto-Assets Regulation - (EU)

Regolazioni FinCEN (US), FCA crypto policies (UK), AMLD5/AMLD6 (UE) e molte altre in base alla giurisdizione

Problemi

- >> Mancanza di un quadro realmente uniforme a livello globale
- Gli obblighi colpiscono soprattutto VASP/CASP (exchange, custodial wallet, banche)
 - L'utente con wallet non-custodial (es. Metamask) non è direttamente soggetto alle regolamentazioni

Soluzioni di compliance - tools

Project	Arbitrary Denomi- nations	Internal Transfers	Due Diligence	Optional Inclusion Delay	State Propagation	Updatable State
Tornado Cash (compliance tool)	×	×	×	✓	×	×
Privacy Pools	✓	×	✓	✓	×	✓
Railgun	✓	✓	✓	X	Х	Х

Tonado Cash (Compliance Tool): meccanismo di reporting opzionale

Privacy Pools: basato su association sets e Proof of Innocence [BIN+24]

Railgun: Proof of Innocence

Problema

Cosa succede se un indirizzo diventa sanzionato in un secondo momento?

Due sfide principali Come aggiornare lo stato

Come propagare il nuovo stato

Il nostro contributo

A Private Smart Wallet with Probabilistic Compliance

Andrea Rizzini, Marco Esposito, Francesco Bruschi, Donatella Sciuto Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy

Email: {andrea.rizzini, marco.esposito, francesco.bruschi, donatella.sciuto}@polimi.it

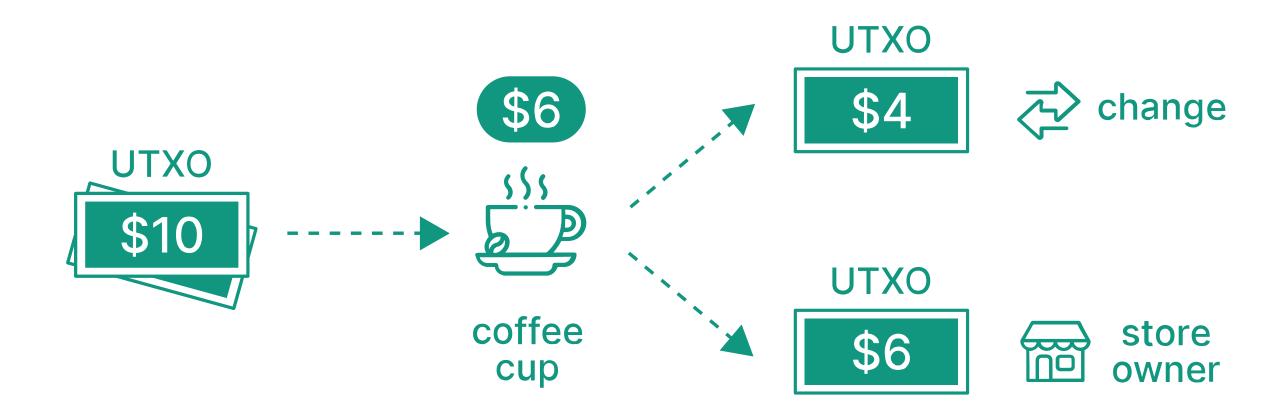
2025 IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS), Tucson, AZ, USA, 2025, pp. 101-110, doi: 10.1109/DAPPS65174.2025.00021.

Ancestral Commitment Compliance

Project	Arbitrary Denomi- nations	Internal Transfers	Due Diligence	Optional Inclusion Delay	State Propagation	Updatable State
Tornado Cash (compliance tool)	×	×	×	✓	×	×
Privacy Pools	✓	×	✓	✓	×	✓
Railgun	✓	✓	✓	×	×	x
Ancestral Commitments	✓	✓	✓	✓	✓	✓

Features del wallet

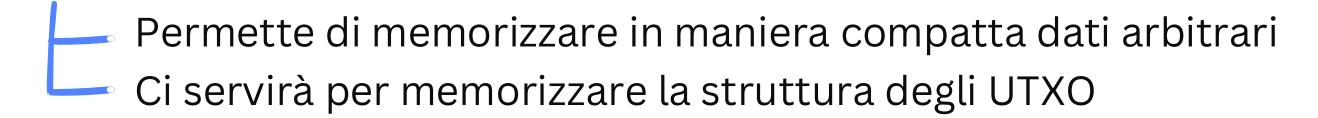
Layer di privacy integrato


Transazioni e onboarding privatizzati

Ancestral Commitment Compliance

ACC - background (1)

Concetti da tenere a mente:


- UTXO: rappresentazione di una quantità arbitraria di token spendibile
- Un utente sulla blockchain può possedere un certo numero di UTXO
- Transazioni basate su UTXO:

ACC - background (2)

Concetti da tenere a mente:

Bloom filter

Zero-knowledge proofs

"Voglio provarti che sono maggiorenne senza rivelare la mia età"
 Permette ad un prover, di provare la correttezza di un certo statement, che verrà verificato da un verifier
 Permette opzionalmente di tenere nascosti certi input della computazione

ACC - il protocollo (1)

Per ottenere transazioni private su Ethereum

Modello UTXO + ZK-proofs

Computazione che voglio dimostrare con le ZK:

Di avere il controllo sugli UTXO che voglio spendere

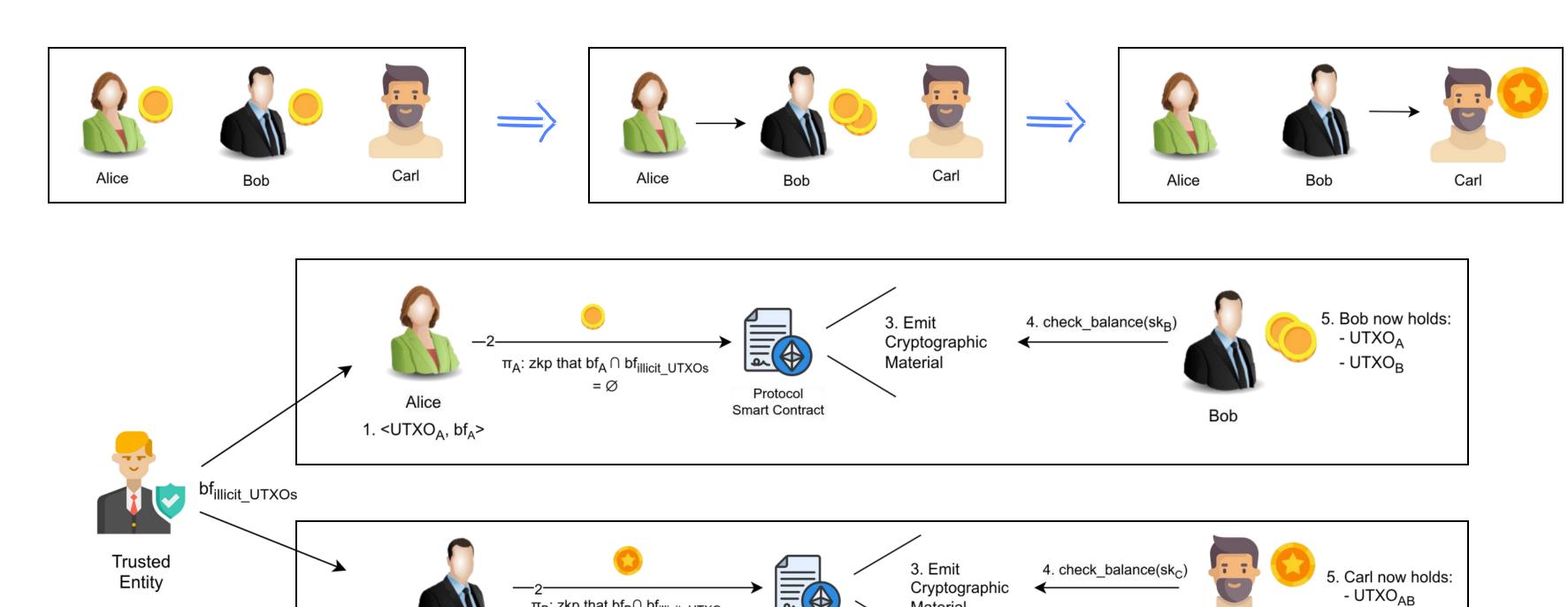
Che gli UTXO che voglio usare non siano già stati spesi (double-spending)

Che l'ammontare resti invariato

Per aggiungere il layer di compliance (ACC)

Trusted entity

ZK-proofs


>> Bloom filter: ogni UTXO ora avrà una rispettiva rappresentazione in un Bloom Filter <UTXO_i, BF_i>

ACC - il protocollo (2)

- 1) La Trusted Entity (TE) tiene traccia degli UTXO che circolano in questo protocollo
- 2) La TE monitora liste pubbliche di transazioni sospette/anomale sulla blockchain
- 3) Se uno UTXO risulta sospetto, la TE lo aggiunge ad una struttura dati apposita
- 4) Un utente che vuole effettuare una transazione privata userà n UTXOs n bloom filter:
- 5) L'utente creerà un bloom filter comprensivo di tutti gli UTXO che sta usando, chiamiamolo BF1
- 6) L'utente creerà un bloom filter comprensivo di tutti gli UTXO segnalati dalla nostra entità fidata, chiamamolo BF2
- 7) L'utente creerà un zkp dimostrando che BF2 non è contenuto in BF1 (BF1∩BF2=Ø)

 Gli UTXO che l'utente sta usando non sono nella lista di quelli segnalati

ACC - esempio completo

Protocol

Smart Contract

Material

Carl

π_B: zkp that bf_B∩ bf_{illicit_UTXOs}

= Ø

→ 2. <UTXO_{AB}, bf_{AB}>

Bob

1. <UTXO_A, $bf_A>$, <UTXO_B, $bf_B>$

Quanto costa usare la nostra soluzione

Operation	Gas π_{acc}	GWei	USD
insertIntoUsersPool	836405	41k	< 0.12
callDeposit	2528502	126k	< 0.33
callTransact	2842161	142k	< 0.36
callWithdraw	2957810	148k	< 0.38

Transazioni per 10 USDC Accettabili comparati alle altre soluzioni

Railgun:

- 0.25% dell'amount per lo shielding (deposito)
- 10% del gas cost totale per le transazioni private

Action	SNARK transaction proof (ms)	$egin{array}{c} ext{SNARK} \ ext{compliance proof} \ ext{(ms)} \end{array}$	Overall time (ms)
Onboard someone	2097.78	22340	24437.78
Onboard via link	X	X	14486.89
Fund the wallet	2064.56	X	X
Transfer privately	1999.40	20500	31292.36
Withdraw	2076.77	20650	22726.77

Overhead:

 tempo aggiunto dal tool di compliance: ~20 seconds

Direzioni future

- Siamo in grado di tracciare gli UTXO illeciti. Come dovremmo trattarli?

 Burning? Rispedirli al mittente? Metterli in un deposito (sequestro)?
- Provare a ridurre ulteriormente i costi
 - Possiamo considerare soluzioni come i Layer-3 (Horizen roadmap)
- Considerazioni sull'open source
 - Fork e modifiche del codice potrebbero introdurre comportamenti indesiderati
 - Forzare la corretta costruzione del bloom filter
- Aumentare la decentralizzazione nel nostro sistema
 - Ridurre la dipendenza dall'entità fidata

Bibliografia

- S Goldwasser, S Micali, and C Rackoff. 1985. The knowledge complexity of interactive proof-systems. In Proceedings of the seventeenth annual ACM symposium on Theory of computing (STOC '85). Association for Computing Machinery, New York, NY, USA, 291–304. https://doi.org/10.1145/22145.22178
- Jens Groth. On the Size of Pairing-Based Non-Interactive Arguments. IACR Cryptology ePrint Archive, Report 2016/260, 2016. Available at: https://eprint.iacr.org/2016/260
- Buterin, Vitalik & Illum, Jacob & Nadler, Matthias & Schär, Fabian & Soleimani, Ameen. (2024). Blockchain privacy and regulatory compliance: Towards a practical equilibrium. Blockchain: Research and Applications, 5(1), 100176. https://doi.org/10.1016/j.bcra.2023.100176.
- Burton H. Bloom. 1970. Space/time trade-offs in hash coding with allowable errors. Commun.
 ACM 13, 7 (July 1970), 422–426. https://doi.org/10.1145/362686.362692

Grazie