Face Recognition and Privacy enhancing techniques

Alberto Cammozzo

Founder, TagMeNot.info
Face recognition was an HOT topic in 2011

What happened then?
I'm not sure if you've heard the news, but Facebook is officially getting super-creepy. Facebook announced Tuesday that it will be implementing facial recognition technology for all users in the next few weeks, semi-automating the photo-tagging process.

Sure, you can "opt-out" of the service, but it's a pretty weak consolation. After all, opting out won't keep Facebook from gathering data and recognizing your face--it'll just keep people from tagging you automatically.

The new facial recognition technology, which was announced in December but only introduced to a small test group, is basically Facebook's way of creating a huge, photo-searchable database of its users. And yes, it's terrifying.
Google warns against facial recognition database

Google’s Executive Chairman Eric Schmidt has warned Governments against ‘foolish’ legislation – and said facial recognition is too creepy even for Google.
There is no way to prevent your friends’ from tagging you on their profiles (timelines), however you can easily remove tagged items from your profile (timeline).

https://www.facebook.com/help/?faq=195516353827606
Facebook has acquired Face.com!

Our mission is and has always been to find new and astonishing ways to make face recognition a fun, engaging part of people’s lives, and incorporate remarkable technology into everyday consumer products. With Facebook, we’ll get to continue to pursue that mission - we couldn’t be more excited. Read more
ICBC offers facial-recognition technology to Vancouver police's riot investigation

A fire burns on the street during the Stanley Cup riot

By Stephen Hui, June 17, 2011

Since 2009, the Insurance Corporation of B.C. has used facial-recognition technology to catch theft and fraud related to driver licences.

Now, the Crown corporation is offering to let Vancouver police use this technology for a very different purpose—to nab rioters who committed crimes in the wake of the Canucks' Stanley Cup loss.
Face recognition technology fails to find UK rioters

18 August 2011 by Niall Firth

For similar stories, visit the Crime and Forensics Topic Guide

The response was as aggressive and swift as the riots themselves. Within a few hours of the worst of last week's looting across London and other English cities, attempts were being made to use CCTV footage to track down the individuals who had plundered shops and destroyed buildings.

But those raised on a diet of TV police dramas who expected crack law enforcement teams to simply plug the footage into a computer and then print out a list of suspects are going to be disappointed. The poor quality of most CCTV footage makes it almost impossible to trust standard automated facial recognition techniques.

One of the most common methods used to help identify an individual from camera footage is photoanthropometry, which uses "proportionality indices" to compare a picture of a suspect on a police database, say, with a CCTV image. Key points on a person's face - such as the chin, edge of the nose, or centre of the top lip - are marked and the distance between them measured. Someone experienced with this technique can then judge whether the two faces match.
Rioter gets five years for looting shop and attacks on police cars

London bus strike: Boris Johnson says 'knock dispute on the head'

Patients' fury at striking doctors - But four out of five London GPs refuse to join pensions protest

Doctors' strike sees one in ten procedures and appointments rescheduled

London bus strike: bosses locked in talks with union in bid to stop industrial action

Action, goals... and WAGS: Euro 2012 in pictures

News pictures of the day

Birthday boy... Prince William turns 30

Marble Arch cordoned off after man's body is found
Police to begin iPhone iris scans amid privacy concerns

By Zach Howard
CONWAY, Mass | Wed Jul 20, 2011 2:59pm EDT

(Reuters) - Dozens of police departments nationwide are gearing up to use a tech company's already controversial iris- and facial-scanning device that slides over an iPhone and helps identify a person or track criminal suspects.
Robocop becomes reality with Spain’s Ex-Sight

By Jennifer Riggins | April 16, 2012, 4:33 AM PDT

ALICANTE—The cyborg facial recognition of Robocop becomes a reality as Spain’s Ex-Sight technology equips police officers with the ability to scan 100,000 faces per second. They can then cross these images with whose in a database and, in moments, identify suspects.

The first widespread implementation of this technology is with the Brazilian police getting ready for the next World Cup and the 2016 Summer Olympics. "The military police have a database of suspicious people they connect with our software, and our software runs inside the control center in every stadium," says Elazar Lozano Vidal, of Ex-Sight Spain. There are cameras at each
Press Release

More passengers embracing hi-tech border controls at Gatwick Airport
6 September 2011

More passengers travelling to the UK via Gatwick Airport are opting to use the hi-tech facial recognition gates to clear border control.

The e-Passport gates at the airport’s North Terminal were used by 289,604 passengers between April 2010 and the end of March 2011, an average of 24,133 per month. But since April 1 this year until the end of July an average of 43,068 passengers have used the e-Passport gates each month.

The state-of-the-art gates, which can be used by anyone with a UK or European ‘chipped’ passport who is aged 18 or over, use facial recognition technology to compare the passenger’s face to the digital image recorded in their passport. Their details are then automatically checked against the UK Border Agency systems and watchlists – just as if they were seen by an officer. Once the checks are made, the gates open automatically to allow the passenger through the border.

The system is monitored at all times by officers from the UK Border Agency and anyone rejected by the gates will be sent to an alternative channel to have their passport checked.

Carole Upshall, UK Border Agency director Border Force South and Europe, said:
Railway to use face recognition technology

The Beijing-Shanghai high-speed railway plans to use a facial identification system at three key stations to help police detect and catch fugitives.

Media reports said yesterday the project’s bidding process will start soon. The system will be set up at Shanghai Hongqiao Railway Station, Tianjin W. Railway Station and Jinan W. Railway Station.

The equipment will be set up at security check areas in the stations, according to the China Academy of Railway Sciences.

"The quick identification system will enable the police to recognize faces via surveillance cameras and comb criminal databases on computers for the final match," authorities said.

Researchers added the technology works when people are moving and is helpful even if suspects have had cosmetic surgery.

Police said the real-name ticket purchasing system also helps them catch criminals. During the Spring Festival travel rush this year, railway police seized 375 fugitives along the rail network.

Despite the technology, police officers are still frequently seen patrolling railway stations and questioning passengers, who show their ID cards for quick identification.

In a recent hunt for a suspect who fled from southern China, police at Shanghai Hongqiao Railway Station used almost all team members to catch him.
Intelligent Automation, Inc.
15400 Calhoun Drive Suite 400
Rockville, MD 20855
Phone: (301) 294-5242
PI: Roger Xu
Title: Non-cooperative Target Tracking and Identification on UAV Platform
Abstract: To achieve the goal of biometric tagging, tracking and localization (TTL) of non-cooperative high value targets based on existing UAV payloads, IAI proposes to develop an integrated real-time tracking and identification system that can automatically track and recognize non-cooperative targets (people of interest) in urban or rural environments. The proposed system is built on top of fast UAV trajectory control, innovative multiple-target tracking, and 3D imaging technologies-enhanced facial recognition approach. There are several key features in the proposed system. First, Innovative target tracking framework based on off-the-shelf target tracking module and a two-level inference engine can handle various non-cooperative target moving patterns under complex cluster environments. Second, by actively integration of target tracking and UAV control algorithms in a closed-loop, the tasks of keeping targets on track and within the sensor's FOV becomes possible. Fast sub-optimal trajectory generation and swift camera pointing control on the fly enable UAV re-acquiring track of lost targets in no time. Third, upon detection of potential targets, camera is automatically adjusted for higher resolution face image capturing, and then 3D imaging technologies enhanced facial recognition algorithm is applied to highly increase the facial recognition rate.

Progeny Systems Corporation
9500 Innovation Drive
Manassas, VA 20110
Phone: (703) 368-6107
PI: Timothy C. Flenker
Title: Long Range, Non-cooperative, Biometric Tagging, Tracking and Location
Abstract: With the growing concerns surrounding security and terrorism around the world, biometrics has become one of the premier solutions to combat these problems. Traditionally, biometrics has been an academic problem that has been studied from the perspective of optimal environments (good lighting, cooperative subjects, single-frontal-2D / 3D photographs, etc.) and unlimited time and processing power. This form of biometric signature is considered “cooperative” and is generally not applicable to the more difficult problem of “real-world” recognition. Non-cooperative feature recognition is an important component to tracking as a method of distinguishing between tracking targets. Tracking and location determination can be accomplished easily on static platforms with controlled backgrounds and camera calibration, but has shown to be significantly more challenging on a mobile UAV platform. Innovative research is required to identify “non-cooperative” techniques that can be developed for implementation under modern battlefield conditions. In this proposal, we present a variety of algorithms and methods to perform tagging, tracking, and locating (TTL) from existing UAV platforms and sensor payloads. We will leverage our prior SBIR and academic experience in this area, fusing remote biometric feature extraction with state-of-the-art image alignment, to tag, track, and locate long-range, non-cooperative targets on diverse video sensor input.
UNILEVER’S SMILE-ACTIVATED ICE CREAM MACHINE

By Paloma Vazquez on June 22, 2010

Unilever revealed an ice cream vending machine to the global advertising community yesterday at Cannes. Branded “Share Happy”, it’s already been billed as the world’s first smile-activated vending machine, and as “an ice cream truck for the digital age”. Ultimately, the vending machine offers a unique brand experience as part of Unilever’s new ice cream mission to encourage people everywhere to share life’s small moments of happiness.

How it works: an “attractor screen” uses augmented reality to compel passer-by’s towards the machine. The person is then prompted to smile, with the ‘smile-o-meter’ measuring his or her grin; facial recognition technology will gauge the individual’s age, gender and emotion. Those with big enough grins are awarded free ice cream, which they can select from the touch-screen interface on the machine. A photo is taken and uploaded onto Facebook – with the person’s permission.
Re-Identification from faces

Alessandro Acquisti @Blackhat 2011

In a nutshell

Democratization of surveillance
Faces as conduits between online and offline data
The emergence of PPI: “personally predictable” information
The rise of visual, facial searches
The future of privacy in a world of augmented reality

Un-Identified DB

- Personal Profiles on Match.com, Prosper.com, etc.
- Photo repositories (e.g., Flickr)
- Open web cams
- CCTVs
- Your face on the street
- [...]

Identified DB

- Personal Profiles on Facebook.com, LinkedIn, etc.
- Govt or corporate databases
- [...]

Face recognition [1] allows to match a subject in an un-identified DB from data in an identified DB [2]
- Once that is done, sensitive data inferred from the un-identified DB [3] can be linked to the identity of the subject in the identified DB [4]

Additional sensitive inferences (e.g. sexual orientation, SSN, etc.)

http://www.heinz.cmu.edu/~acquisti/face-recognition-study-FAQ/
And so on...

@DontTag

for updates on

#faceRecognition

#faceRec
Index

1. What is Face recognition, its use in social networks: a suggested taxonomy

2. Face recognition issues and *contextual integrity* (Nissenbaum 2004)

3. How to oppose face recognition: technologies and techniques

4. Conclusions: privacy-by-design and transparent technology architectures
What is “Face Recognition”?

{ Facial | face } { recognition | processing }

1) Face detection
2) Face matching
3) Identity association
4) Face identification or verification
Detection: “here is a face”

- Detects sex, age, mood
- Intentions recognition
- **NO** facial feature or template storing

- Digital Cameras
- Digital signage/DOOH (billboards)
- Privacy protection
 - Google streetview blurring
 - Human rights activists cameras
Matching: “that face, again”

- Matches the same face appearing in different pictures
- Extracts and Stores features or templates that are unique to each face

- Surveillance CCTV systems
- Facial search engine on public/private pictures
 - Face.com
 - Google Picasa
 - Facebook tag suggestion
 - Astonishing Tribe Recognizr (unreleased)
Identity Association: “that’s you, Bob”

- Links personal data to reference face template
 = enrollment

- Enrollment:
 - Overt/Covert
 - Cooperative/non-cooperative

- Social networks: tagging

- Tagging
 - Self
 - By others

- Automatic tag suggestions
Identity Verification:
“Is that really you, Bob?”

- Match a face (feature) against a reference template linked to identity information

- Access control
- Time attendance
- Border processing
- Police Offender Recognition
- Casinos: problem gamblers identification
- VIP lists
- PC webcam login
Index

1. What is Face recognition, its use in social networks: a suggested taxonomy

2. Face recognition issues and contextual integrity (Nissenbaum 2004)

3. How to oppose face recognition: technologies and techniques

4. Conclusions: privacy-by-design and transparent technology architectures
What are the main issues?

1. Unintended use
2. Data retention
3. Context puncturing/leakage
4. Information asymmetry
1. Unintended use

[e.g. Your graduation party pictures available to recruiters]

aka

unauthorized secondary use

[Smith, Milberg, Burke 1996]

function creep

[Woodward 1997]

“identity theft”
2. Data retention

"On the Internet, nobody knows you're a dog."
2. Data retention

"On the Internet, nobody knows you're a dog."
3. Context leakage

• Nissenbaum 2004 “contextual integrity”

 Almost everything happens in a context not only of place but of politics, convention, and cultural expectation.
 Norms of appropriateness dictate what information about persons is appropriate [...] to reveal in a particular context
 Common practices are understood to reflect norms of appropriateness and flow, and breaches of these norms are held to be violations of privacy.

• Public places are contexts of anonymity! Nobody wears a name tag in public.
4. Information asymmetry

- Pagallo 2008

 In new surveillance technologies the controller has access to information about the controlled that the controlled himself ignores

- Pictures taken in public and stored in public repositories can be used for re-identification and even verification

- False positives may lead to reputation damage
Future issue: Interoperability

- Interoperability of FR systems leads to features “exchange”

AND

- Security breach may expose interoperable FR identification data
New Protocol Enables Wireless and Secure Biometric Acquisition with Web Services

From NIST Tech Beat: May 2, 2012

Contact: Evelyn Brown
301-975-5661

Researchers at the National Institute of Standards and Technology (NIST) have developed and published a new protocol for communicating with biometric sensors over wired and wireless networks—using some of the same technologies that underpin the web.

The new protocol, called WS-Biometric Devices (WS-BD), allows desktops, laptops, tablets and smartphones to access sensors that capture biometric data such as fingerprints, iris images and face images using web services. Web services themselves are not new; for example, video-on-demand services use web services to stream videos to mobile devices and televisions.

The WS-Biometric Devices protocol will greatly simplify setting up and maintaining secure biometric systems for verifying identity because such biometric systems will be easier to assemble with interoperable components compared to current biometrics systems that generally have proprietary device-specific drivers and cables. WS-BD enables interoperability by adding a device-independent web-services layer in the communication protocol between biometric devices and systems.

Remember the last time you bought a new computer only to learn that you then had to upgrade your printer and find the appropriate drivers? For system owners, the difficulty of upgrading devices on a biometric system can mean significant costs. Using the WS-BD protocol eliminates that problem.

"This would be useful to many organizations that house biometric systems, including border control and customs agencies," explained computer scientist Kevin Mangold. Using current biometric systems, when one biometric sensor breaks, it can be expensive and time-consuming to find a replacement because manufacturers often change product lines and phase out previous generation devices. A few broken devices could entail having to rebuild the entire system, upgrade devices and drivers that may be incompatible with host operating systems, and retrain personnel, he said.
Index

1. What is Face recognition, its use in social networks: a suggested taxonomy

2. Face recognition issues and contextual integrity (Nissenbaum 2004)

3. How to oppose face recognition: technologies and techniques

4. Conclusions: privacy-by-design and transparent technology architectures
"Pixelhead" Masks Your Face From Google's Roving Cameras

Surveillance chic for the fashion-conscious paranoiac, courtesy of artist Martin Backes.
Fashion

Makeup

Camouflage from Computer Vision

by Adam Harvey | ahprojects.com | Email
Location: 63 Flushing Ave. Brooklyn, NY

Introduction

CV Dazzle is camouflage from computer vision (CV). It is a form of expressive interference that combines makeup and hair styling (or other modifications) with face-detection thwarting designs. The name is derived from a type of camouflage used during WW1, called Dazzle, which was used to break apart the gestalt-image of warships, making it hard to discern their directionality, size, and orientation. Likewise, the goal of CV Dazzle is to break apart the gestalt of a face, or object, and make it undetectable to computer vision algorithms, in particular face detection.

And because face detection is the first step in automated facial recognition, CV Dazzle can be used in any environment where automated face recognition systems are in use, such as Google's Picasa, Flickr, or Facebook (see CV Dazzle vs PhotoTagger by Face.com).

Project Overview

This project began as a thesis proposal at the Interactive Telecommunications Program at New York University in the spring of 2010 with the primary objective of thwarting face detection under the guise of high-fashion aesthetics. While there are several obvious approaches to hiding from face detection, some of these known vulnerabilities have already been addressed by impracticality (sunglasses are a known occlusion) or state laws (wearing masks in public can be illegal). Instead, this project explored ways of hiding in plain sight using non-obvious, inconspicuous, and unconstrained solution. As such, it aims to be deceptively fashionable and functionally deceptive.

Objective

CV Dazzle is an antagonistic technology. It opposes the mainstream push towards the widespread adoption of face recognition. Several studies have proven that it's now easily possible to identify people in public using an image of someone's face and social network data (see "Anonymous as proxy" for one example). Of course, this is just a preview. Facial recognition is the fastest growing biometric...
Hacktivism:

IR CCTV blinding

IR used to defeat CCTV

July 27, 2008 — 585

We are repeatedly told the CCTV is here to protect us from the worst of the world’s offenders, including terrorists and international criminals. Despite the obvious flaw in the argument that suicide bombers are not bothered if they are filmed blowing themselves up (especially as they normally release videos to that effect shortly afterwards anyway), there is the additional issue that if a person wants to hide their face from a standard CCTV camera it is incredibly easy.

A person can hide their face with a beard, material (mask/bandanna/etc), or they can go slightly more high tech and use infrared lights.

A single point source of an IR Laser, if pointed directly at CCTV camera will flare the camera, however that involves a laser and the user to point and hold the laser directly at the camera. However, if the individual uses an array of IR LEDs then the effect is the same, as a single directed laser.

The idea is relatively simple, the user places IR LEDs in a "head torch, such as the one pictured inset. IR LEDs can be bought for just 79p and LED head torches can be bought for just under £5. IR – Infrared - with a range of 750nm to 1mm has a range below the human eye, but can still be detected by CCTV cameras.

Below are the effects of using this type of technology. There are flaw in this anti-CCTV devices. The LEDs need to be powerful enough, the and CCTV camera needs to not have an IR filter. It is also possible, to enhance the blue green spectrum after the incident to try and recover a better image.
Computerized Face-Recognition Technology Is Still Easily Foiled by Cosmetic Surgery

In the first test of face-recognition technology vs. cosmetic surgery, face recognition loses
By WILLIE D. JONES / SEPTEMBER 2009

For years, developers of face-recognition algorithms have been battling the effects of awkward poses, facial expressions, and disguises like hats, wigs, and fake moustaches. They’ve had some success, but they may be meeting their match in plastic surgery.
TagMeNot.info

NO PERSONAL DETAILS ONLINE PLEASE!
I DON'T WANT MY FACE ON THE WEB
I DON'T WANT TO BE TAGGED.

What is TagMeNot?

Opt-out for pictures taken in public
TagMeNot is a pre-emptive, anticipatory, vendor independent, and free opt-out technology for pictures taken in public places.
The TagMeNot is a QR-Code that links to the site TagMeNot.info, where your will of not being tagged and recognized is clearly stated and could not be ignored.

Uses
1. Stick a TagMeNot out of your house and make Google Street View and MS Streetside know you are opting-out
2. Avoid tagging and face recognition from social networks (as Facebook): wear a TagMeNot to state clearly you don't allow tagging
3. Avoid personal pictorial information online: display a TagMeNot to state that any picture of you has to be blurred prior to publishing
Technological responses (privacy by design)

- [Erkin et al., 2009]: Store/match decoupling: hide the biometric data as well as the authentication result from the server that performs the matching.

- [Newton, Sweeney, and Malin, 2005]: Image de-identification: de-identifying algorithm that makes identification ineffective while preserving most facial details in the pictures.

- [Boult, 2006]: Encryption: encrypt biometric tokens (such as face template) hiding user’s identity and allowing token revocation.
Biometric data: Schools will need parents' approval

Schools in England will be banned from taking pupils' fingerprints and using face-recognition technology unless they get permission from parents.

New government guidance says written parental permission must be obtained to use students' biometric data.

Pupils themselves will also be allowed to refuse to participate.

Schools can use fingerprinting or face scanning for recording attendance, checking out library books, paying for lunch or accessing school buildings.

Last year the Association of School and College Leaders (ASCL) estimated that about 30% of secondaries in England were using biometric data.

Sensitive

The new advice, which is now being consulted on, will come into effect from September 2013.

Schools Minister Nick Gibb said the use of biometrics in schools was a sensitive issue and schools should be in no doubt of their responsibilities.
Opinion 02/2012 on facial recognition in online and mobile services
Adopted on 22 March 2012

Data Protection Directive (95/46/EC)

9 Recommendations:

1-5: Unlawful processing for the purposes of facial recognition: esp. valid consent and use for the specified purpose,
6: Security breach during transit
7: Data Minimization
8: Security breach during data storage
9: Subject access
Index

1. What is Face recognition, its use in social networks: a suggested taxonomy

2. Face recognition issues and contextual integrity (Nissenbaum 2004)

3. How to oppose face recognition: technologies and techniques

4. Conclusions: privacy-by-design and transparent technology architectures
Conclusions

- **Privacy Chernobyl scenario:** Disjoint and unrestricted FR by default. Can lead to ubiquitous identification and surveillance by anyone [Rosen 2011]

- Is privacy by design adopted in SN face recognition applications?

 Joint face matching could be restricted to user data and initiated by user, but neither Google nor FB followed this approach (FR by default on all pictures)
Alberto, Cammozzo “Face Recognition and Privacy enhancing techniques”
Thank you

Alberto @ cammozzo.com
Taxonomy of FR matching in SNs

<table>
<thead>
<tr>
<th>store and match activities</th>
<th>matching scope</th>
<th>face signature generation initiative</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>joint</td>
<td>unrestricted access to storage provider data</td>
<td>by default</td>
<td>none known so far</td>
</tr>
<tr>
<td></td>
<td>restricted to user data</td>
<td>by default</td>
<td>Facebook tag suggestion, Google Picasa face matching</td>
</tr>
<tr>
<td></td>
<td>initiated by user</td>
<td></td>
<td>none known so far</td>
</tr>
<tr>
<td>disjoint</td>
<td>unrestricted access to publicly available data</td>
<td>initiated by third party</td>
<td>Google (unreleased)</td>
</tr>
<tr>
<td></td>
<td>restricted by user's credentials</td>
<td>initiated by user</td>
<td>Face.com photo tagger, PittPatt.com (acquired by G) Viewdle Social Camera, Astonishing Tribe Recognizr (unreleased)</td>
</tr>
</tbody>
</table>